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Introduction
Portfolio Choice with Frictions

I Optimal portfolio selection is a key problem in finance.
I Individual decision making.
I Starting point for equilibrium models.

I Frictionless theory after Merton (1969, 1973) prescribes
incessant rebalancing.

I Not feasible with frictions.
I Optimal behavior should reflect tradeoff between:

I Displacement from optimal allocation.
I Costs of trading.

I Important?
I When and how?
I Simple and robust adjustments?



Introduction
Passive Investment

I This talk: proportional costs. Bid-ask spreads.
I Key insight (Magill/Constantinides, 1976):

I No-trade region around the frictionless target.
I Remain inactive while inside.
I Start trading when boundaries are breached.

I Mathematically precise formulation?
I Davis/Norman (1990). Shreve/Soner (1994).
I Singular control. Reflected diffusions à la Harrison.

I Numerical results (Constantinides, 1986):
I Even small costs have large effect on asset demand.
I But welfare loss is small if trading is reduced optimally.

I Assumes constant investment opportunities.
I Strategies almost passive. Rebalancing is only motive to trade.
I What about more active trading strategies?



Introduction
Active Investment

I Complex models typically intractable with frictions.
I Numerical results in concrete settings:

I Lynch/Tan (2011). Backward induction.
I Dai, Li, Liu, Wang (2014). Coupled PDEs.
I Frictions have much bigger effect.
I But difficult to understand structure and comparative statics.

I Alternative: asymptotics for small costs.
I Treat problem as perturbation of its frictionless counterpart.
I Compute leading-order corrections of optimal policy and

performance.
I Constant investment opportunities: Shreve/Soner (1994).

Janeček/Shreve (2004).
I Recent progress for active investment strategies..



Introduction
Active Investment ct’d

I Hedge a call option in Black-Scholes framework.
I Whalley/Wilmott (1997). Almgren/Li (2011). Bichuch (2014).

I Maximize sum of one-period mean variance profits.
I Mean-reversion strategies: Martin/Schöneborn (2011).
I Trend following: Martin (2012). Bouchaud et al. (2012).

Garleanu/Pedersen (2013). Collin-Dufresne et al. (2014).
I Infinite horizon investment/consumption problems.

I Soner/Touzi (2013). Possamaï, Soner, Touzi (2014).
I Different concrete models and objectives.
I This talk: pass to general setting.

I Uncovers underlying general structure.
I Resulting formulas are easy to interpret and implement.

Robust with respect to particular model specifications.



Results
Model

General asset prices:
I One safe asset. Normalized to one.
I One risky asset. Traded with proportional costs εt = εEt > 0.

Mid price:
dSt = bS

t dt +
√

cS
t dWt

I General diffusive dynamics.
I Can include heteroskedasticity and predictable returns leading

to market timing.
I No Markovian structure required.
I Transaction costs can be random and time-varying.

Itô process Et rescaled by small parameter ε.



Results
Model

General investment/consumption problem:
I Investor solves:

E
[∫ T

0
u1(t, κεt )dt + u2(X ε

T (ϕε, κε))

]
→ max!

over policies (ϕεt , κ
ε
t ) with wealth processes

X ε
t (ϕε, κε) = X0 +

∫ t

0
ϕεsdSs −

∫ t

0
κεsds + Ψt −

∫ t

0
εsd ||ϕε||s

I Utility from intermediate consumption and terminal wealth.
Random endowment stream Ψt .

I Covers hedging, lifecycle investing, market timing, etc.



Results
Approximately Optimal Policy

Adjustment of the frictionless optimal policy (Kallsen/M-K, 2014):
I Use frictionless consumption.

I Robust. Only adjust for reduced wealth.
I Time- and state-dependent no-trade region:

[NTt −∆NTt ,NTt −∆NTt ]

I Midpoint NTt is frictionless target.
I Also only adjusted for reduced wealth.

I Half-width ∆NTt is the crucial quantity:

∆NTt =

(3Rt
2

d〈ϕ〉t
d〈S〉t

εt

)1/3



Results
Approximately Optimal Policy ct’d

I Half-width of optimal no-trade region:(3Rt
2

d〈ϕ〉t
d〈S〉t

εt

)1/3

I Key driver: portfolio gamma d〈ϕ〉t/d〈S〉t .
I Ratio of squared diffusion coefficients.
I Active strategies require wide buffer.
I Turbulent markets call for close tracking.
I For delta-hedge: option gamma.
I Sample from realized variance of frictionless benchmark.

I Only current spread εt matters for correction.
I Future dynamics not hedged at the leading order.

I Preferences subsumed by indirect risk-tolerance Rt .



Results
Indirect Risk-Tolerance Process

Measure for risk tolerance?
I Risk tolerance Rt = − U′(t,Xt)

U′′(t,Xt)
of the indirect utility:

U(t, x) = sup
(ϕ,κ)

Et

[∫ T

t
u1(s, κs)ds + u2

(
x +

∫ T

t
ϕsdSs −

∫ T

t
κsds

)]
I Current against future consumption. Average over scenarios.
I Quantifies wealth-dependence of preferences.
I Bound to appear in any perturbation of frictionless problems.

I Utility-based prices and hedges for small claims
(Kramkov/Sîrbu, 2006).

I Sensitivity of optimal consumption streams w.r.t. perturbations
of the endowment (Herdegen/M-K, 2015).

I Here: novel dynamic characterization by quadratic BSDE.



Results
Performance

I Performance loss due to trading costs?
I Maximal utilities: U(x) without and Uε(x) with costs.
I Certainty equivalent loss (Kallsen/M-K, 2014):

Uε(x) ∼ U
(

x − EQ
[∫ T

0

(∆NTt)2

2Rt
d〈S〉t

])

I Portfolio gamma d〈ϕ〉t/d〈S〉t quantifies liquidity risk.
Appealingly robust proxy: also central for..

I ..discrete trading (Bertsimas, Kogan, Lo, 2000;
Hayashi/Mykland, 2005)

I ..optimal discretization (Fukasawa, 2011, 2013;
Rosenbaum/Tankov, 2014)

I ..other trading costs (Altarovici, M-K, Soner, 2013; Moreau,
M-K, Soner, 2014)



Results
Performance ct’d

Performance loss:
I Portfolio gamma d〈ϕ〉t/d〈S〉t determines magnitude.

I Transaction costs matter for active trading!
I Universal scaling for welfare effect of small costs:

I Two thirds caused by trading costs.
I One third by displacement.

I For small transaction tax in the spirit of Tobin:
I Two thirds of welfare loss paid to government.

Can be redistributed.
I One third dissipates. True “friction”.

I Result surprisingly robust. Independent of asset price and cost
dynamics, preferences, endowments.

I Only assumptions: diffusive prices, proportional cost structure.



Results
General Equilibrium

So far: partial equilibrium models. General equilibrium?
I Needed to analyze policies like a financial transaction tax.

I 2/3-1/3 split of welfare losses robust?
I Finance literature: numerical solution of discrete models.

I Buss/Dumas (2013). Buss, Uppal, Vilkov (2013).
I Only exception: Lo, Mamaysky, Wang (2004).

I Asymptotic analysis of a particular model with fixed costs.
I Bank account exogenous. No full equilibrium.

I Current work in progress with Martin Herdegen:
I Endogenous asset returns and interest rates.
I Two agents. Receive endowments. Invest and consume

optimally in frictionless equilibrium.
I Linear transaction tax paid to state. Consumes optimally.



Results
General Equilibrium ct’d

Effect of a small friction?
I Assume all agents use leading-order optimal strategies.
I No-trade regions have to match for stock market clearing:

I Midpoints offset for exponential utilities.
I Also need

(
3R1

t
2

d〈ϕ1〉t
d〈S〉t

ε1
t

)1/3
=
(

3R2
t

2
d〈ϕ2〉t
d〈S〉t

ε2
t

)1/3

I Frictionless market clearing implies d〈ϕ1〉t = d〈ϕ2〉t .
I Split of tax ε = ε1

t + ε2
t determined by risk tolerances R1

t ,R2
t .

I Consumptions of agents and state need to clear bond market.
I Can be ensured using sensitivity analysis of optimal

consumption streams (Herdegen/M-K, 2015).
I Final result: frictionless equilibrium robust.

I Does not need to change because of small friction.
I Partial equilibrium analysis justified for exponential utilities.



Summary
Summary

I Approximately optimal policy with small proportional
transaction costs.

I “Myopic” correction for small frictions.
I Drivers: current trading cost, indirect risk tolerance, portfolio

gamma.
I Leading order welfare loss.

I 2/3 due to trading costs, 1/3 due to displacement.
I Portfolio gamma d〈ϕ〉t/d〈S〉t quantifies liquidity risk.

I Results are very robust.
I General preferences, price and cost dynamics.
I Random endowments.
I No Markovian structure required.
I Results extend to other optimization criteria and frictions.
I Extension to general equilibrium for exponential utilities.



Derivations
Small-Cost Expansion

I How to derive the results summarized above?
I General, non-Markovian, singular control problem.
I Where do the myopic small-cost corrections come from?

I Let us sketch the idea on an informal level.
I For simplicity:

I Utility from terminal wealth only.
I Constant absolute risk tolerance R = −u′

2/u′′
2 .

I Perform second-order Taylor expansion around the frictionless
optimal wealth process x +

∫ T
0 ϕtdSt .

I Two pertuarbations:
I Small trading cost εt .
I Small adjustment ∆ϕt of the trading strategy.



Derivations
Transaction Costs and Displacement

E
[
u2

(
x +

∫ T

0
(ϕt + ∆ϕt)dSt −

∫ T

0
εtd ||ϕ+ ∆ϕ||t

)]

≈ E
[
u2

(
x +

∫ T

0
ϕtdSt

)]

+ βEQ

[∫ T

0
∆ϕtdSt −

∫ T

0
εtd ||ϕ+ ∆ϕ||t

]

− 1
2βEQ

R−1
(∫ T

0
∆ϕtdSt −

∫ T

0
εtd ||ϕ+ ∆ϕ||t

)2


I Here: Q is the frictionless dual martingale measure with
density dQ/dP = u′2(x +

∫ T
0 ϕtdSt)/β.



Derivations
Transaction Costs and Displacement ct’d

I Whence:

E
[
u2

(
x +

∫ T

0
(ϕt + ∆ϕt)dSt −

∫ T

0
εtd ||ϕ+ ∆ϕ||t

)]

≈ E
[
u2

(
x +

∫ T

0
ϕtdSt

)]
− βEQ

[∫ T

0
εtd ||ϕ+ ∆ϕ||t

]

− 1
2βEQ

[
R−1

∫ T

0
(∆ϕt)2d〈S〉t

]

I First correction term represents expected transaction cost loss.
I Second corresponds to displacement loss.
I Computation?



Derivations
Homogenization

I Ansatz: optimal strategy remains close to frictionless target by
reflection off trading boundaries.

I Whence: deviation follows reflected diffusion.
I Change of time, space: approximate by reflected Brownian

motion with infinitesimal variance d〈ϕ〉t/dt at the first order.
I Transaction costs = local time at boundaries.

I Expectation given by (d〈ϕ〉t/dt)/2∆NTt .
I Stationary law uniform.

I Ergodic theorem allows to replace squared deviation ∆ϕ2
t by

expectation ∆NT2/3.
I Separation of time scales. Fast variable is “homogenized” out.



Derivations
Pointwise Optimization

In summary:
I Transaction cost loss:

βEQ

[∫ T

0
εt

d〈ϕ〉t/dt
2∆NTt

dt
]

I Displacement loss:

β

3R EQ

[∫ T

0
∆NT2

t
d〈S〉t

dt dt
]

I Optimal boundaries determined by pointwise maximization:

∆NTt =

(3R
2

d〈ϕ〉t
d〈S〉t

εt

)1/3



Derivations
Other frictions

Other trading costs? ( tonight’s talk)
I Basic idea similar. But renormalized deviations differ:

I Reflected Brownian motion for proportional costs.
I Fixed costs: killed Brownian motion restarted at the origin.
I OU-type process with quadratic costs.

I Trading costs scale differently.
I Asymptotic stationary law depends on control used:

I Uniform for proportional costs.
I “Hat function” for fixed costs.
I Gaussian for quadratic costs.

For papers and preprints:
I http://www.math.ethz.ch/~jmuhleka/

http://www.math.ethz.ch/~jmuhleka/
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